softMC

Servotronix Motion API

Reference Manual

Revision 1.0

° SERVOTRONIX

always in motion™

softMC

Revision History

Document Date Remarks
Revision
1.0 Nov. 2014 Initial release

Copyright Notice

© 2014 Servotronix Motion Control Ltd.

All rights reserved. No part of this work may be reproduced or transmitted in any
form or by any means without prior written permission of Servotronix Motion
Control Ltd..

Disclaimer

This product documentation was accurate and reliable at the time of its release.
Servotronix Motion Control Ltd. reserves the right to change the specifications of
the product described in this manual without notice at any time.

Trademarks

All marks in this manual are the property of their respective owners.

Contact Information

Servotronix Motion Control Ltd.
21C Yagia Kapayim Street
Petach Tikva 49130 Israel

Tel: +972 (3) 927 3800

Fax: +972 (3) 922 8075
Website: www.servotronix.com

Customer Service

Servotronix is committed to delivering quality customer service and support for
all our products. Our goal is to provide our customers with the information and
resources so that they are available, without delay, if and when they are needed.
In order to serve in the most effective way, we recommend that you contact
your local sales representative for order status and delivery information, product
information and literature, and application and field technical assistance. If you
are unable to contact your local sales representative for any reason, please use
the most relevant of the contact details below:

For technical support, contact: tech.support@servotronix.com
To order products, contact: orders@servotronix.com

For all other inquiries regarding Servotronix products, contact:
customer.service@servotronix.com

Servotronix Motion API Reference Manual

http://www.servotronix.com/
mailto:tech.support@servotronix.com
mailto:orders@servotronix.com
mailto:customer.service@servotronix.com

softMC

Servotronix Motion API Reference Manual

softMC

Contents
1 Introduction 7
N O O 1Y =T Y < 7
1.2 INitializzation .o e e 7
1.3 Device Table ..o e 7
1.4 ACCESSING DEVICES ... vttt e e 8
CommaAaNd EXECULION ...t et et 8
LY=L= o] (S ol ol =] PP 8
T o o i =TT T 1 8
] o] i @ L= 9
1.6 Termination (ClEaNUP) .. . c et e e e e e e e e e e neeanes 10
1.7 Sending/Retrieving Files ... e 10
1.8 Advanced Asynchronous Message Handling.........ccooeiiiiiiiiiii e 11
1.9 Programming with Visual BasiC........ooeieiiiiiii e 11
2 Functions 13
2.1 1 APT Initializationcee e 13
KMINIE@lIZE e e e 13
QN =T T == P 13
2.2 Device Management. . i e 14
KMCreateController. ... e e e e 14
KM At eSS @ COSAXIS. 11t iutititititatiaaa e e e e e e e e e s e e reanes 15
L1 TS] o 01V TV T 16
2.3 DEVICE ACCESS .ttt 16
1 =T UL o= 5 T P 16
KMEXeCULECMARESPONSE ...uieieie ettt et et e e e e e e e e ees 17
KMVariableControllerGetLongValueooeiiiiiiii e 17
KMVariableControllerGetDbIValueo e 18
KMVariableControllerGetStringValue.o e 18
KMVariableControllerSetLongValue........coiiiiiiiiii e e 19
KMVariableControllerSetDbIValue. ... e 19
KMVariableControllerSetStringValueo e 20
EX AP L e e 20
= o T = P 21
KIMPUEFTI . et e e e e aees 22
EX AP 2 e 22
KMGEtMaxControll@rAXIS e et ae e e 23
2.4 Error Handling ..ot 23
EX AP 3 i 24
KMEITOrGetMESSAgE .u ittt e e r e e e e e e e aaes 25
KMErrorGetDeVIiCEMESSAgE. .. vttt e r e e e e e e 25
KMErrorGetOriginalDeVviCEMeESSage uuue et e e e ees 26
EX AP o e 26
2.5 DEViICE Table ACCESS . ittt et e e e e aaeas 27
KMGELAXISCONLIOIIE ..ot e et aeees 27
KMGEetDEVICENGME .uitiiiiiii i e e e s 28
KMGetDeVIiCeProdUCECIASS.v ettt e e e e e ees 28
KMGetDeVICEPrOdUCETYPE ... ettt e e e e e ees 28
[T u DAV ol =T @le] g o1 o 4 1 14 o1 29
KMGetDeVviceCommPOIT ... e 29
(O @fo] o) o] L= of | P 29
EX AP D e e 30
2.6 Device Table Saving and LOadingc.ooeiriiiiiiii i e 31
KMWItEDEVICEFIIE .. e et et aeees 31
KMREAADEVICEFII. ...t e e et aeees 32

Servotronix Motion API Reference Manual 5

EX AP 6 i e 32

2.7 Device Table Tteratorsoc it 32
KMCreateDeVviCelterator. .. oui i e e 32
KMDestroyDeViCeIterator. v e e e 33
KMGEENEXEDEVICE ittt s r e e e s e aaes 33
KMGEIPreVDEVICE ittt e e e e e 34

EX AP 7 e e 34

2.8 Asynchronous Message Handler........coiieiiiiiii e 34
KMASYNCGEEHANAIET ... et e e e e e e e ees 35
KMASYNCSEEHANAIGK ... e e ees 35
KMASYNCGEEMESSAGE . ..ttt e r e e e e aaes 35
KMASYNCEN@DIEMESSAGES et aeees 36

EX AP 8 i e 36

2.9 Serial and Ethernet Specific FUNCLIONSoiiiii e 36
KMTCPREfIESNDEVICES .. eee ettt e e e e e e e e e 36
KMTCPGEINUMDEVICES 1.utiiiiiiitiiiiiiiri s s r e e e e e s 37
KMTCPGetDeviceInformationo.oieiiieii e 37

EX AP O i e 38

3 Glossary 41

6 Servotronix Motion API Reference Manual

softMC Introduction

1 Introduction

1.1 Overview

The Servotronix Motion API (application programming interface) allows you to
interface your machine controller with the softMC motion controller by providing
the means for:

B Sending commands and receiving responses

B Reading and setting drive or controller variables
B Sending and retrieving files

B Error handling

The API provides a library of functions that allow you to describe your system in
terms of devices (axes, groups, controllers) and then communicate with these
devices individually.

Note: The term "SERCOS” appears in some function names due to legacy
support. These functions can be applied to all types of axes, such as
CAN or EtherCAT.

The Servotronix Motion API is available for Windows XP/Windows 7, and is
compatible with a wide variety of 32/64-bit programming tools, including
Microsoft Visual Basic and Microsoft Visual C++. The API is provided as a
Windows DLL which makes it accessible from most Windows programming
languages.

The API is installed as part of the ControlStudio installation.

1.2 Initialization

The first step in using the API is to call the initialization function KMInitialize.
This ensures that the information which the API maintains internally about your
application is correct. No other API calls should be made before the API is
initialized.

1.3 Device Table

Central to the API is the device table, a database that is managed by the API.
The device table is populated with devices by the programmer, and enables the
execution of commands on any device in the device table. Most communication
techniques are built-in to the API, allowing you to focus on high level
programming instead of communication protocols.

After initializing the API, the next task is to describe your system to the API. A
typical system contains a softMC motion controller with several connected CDHD
servo drives. This process involves describing and adding the devices you want
to control to the API library device table.

The API has a set of functions that allow you to add devices to the API device
table. Each of the KMCreate functions returns a handle to the newly created
device. Handles allow the API to know which device you are referring to.

Servotronix Motion API Reference Manual 7

Introduction softMC

The device table access functions can be used to retrieve a handle to a device or
information about a particular device. For example, the function
KMGetAxisController returns a handle to the controller for an associated axis.

Note: The handle returned by KMCreateSercosAxis is a handle to an axis. An
axis encompasses data on the controller. This will be important when
you begin accessing data via the axis handle because you must select
whether you are accessing the drive or the controller.

Other functions perform actions such as retrieval of the name, ID, product type,
communication type of a device.

To iterate through the device table, a device table iterator needs to be created
using the KMCreateDevicelterator. An iterator can be created to display all the
controllers, axes, or groups or any combination of the three. Once created, the
functions KMGetNextDevice and KMGetPrevDevice may be called to move to the
next or previous device on the iterator list.

To remove devices from the device table use the function KMDestroyDevice.

Device tables can be saved and loaded via the functions KMWriteDeviceFile and
KMReadDeviceFile.

1.4 Accessing Devices

The API provides two mechanisms for communicating with devices: command
execution and variable access.

Command Execution

Command execution is handled through two functions, KMExecuteCmd and
KMExecuteCmdResponse.

Each of these functions takes a handle to the device on which the command
should be executed and a string buffer containing the command to be executed.
KMExecuteCmdResponse also takes a user buffer for the response to the
command and an indication of the length of the user buffer.

Variable Access

Variable access functions include functions to get and set variables for each type
(long, double, string), as well as functions to access the two components of an
axis (drive and controller).

The distinction between the different types of variables is for user convenience.
You can access variables that are of type string on the softMC with the function
KMVariableControllerGetStringValue.

1.5 Error Messages

Most of the API functions return a code that indicates the status of the action
requested by the programmer. Full text descriptions of the error are often
associated with the error and can be accessed via API calls.

Most of the API functions return an error code. Successful API functions return
KM_ERR_OK. Errors originate in the device itself or the API. When the message
originates within the API, an error number is returned that can be compared
against the list of errors in the API header files (C/C++) or the global files
(Visual Basic).

8 Servotronix Motion API Reference Manual

softMC

Introduction

Error Codes

Error Code Value (hex)
KM_ERR_OK HO00000000
KM_ERR_BAD HFFFFFFFF
KM_ERR_BAD_CRC HO00800001
KM_ERR_TIME_OUT H00800002
KM_ERR_BAD_DEVICE_ID HO00800003
KM_ERR_DEVICE_NOT_INSTALLED HO00800004
KM_ERR_LOCK_FAILED HO00800005
KM_ERR_NO_DATA H00800006
KM_ERR_BUFFER_TOO_SMALL HO00800007
KM_ERR_ASYNC HO00800008
KM_ERR_FAIL_SEND_MSG HO00800009
KM_ERR_FAIL_ACK_NAK HOO80000A
KM_ERR_FAIL_ACCEPT H0080000B
KM_ERR_FAIL_PROTOCOL HO0080000C
KM_ERR_FAIL_RESPOND HO080000D
KM_ERR_UNKNOWN_MESSAGE HOO80000E
KM_ERR_MEM_LOCK HOO80000F
KM_ERR_FAIL_CREATE_FILE HO00800010
KM_ERR_FAIL_OPEN_FILE HO00800011
KM_ERR_FAIL_FIND_FILE H00800012
KM_ERR_UNEXPECTED_EOF HO00800013
KM_ERR_NO_CONTEXT HO00800014
KM_ERR_MEM_ALLOC HO00800015
KM_ERR_INVALID_PRODUCT H00800016
KM_ERR_SYSTEM HO00800017
KM_ERR_FAIL_FIND_NAME HO00800018
KM_ERR_INVALID_TYPE H00800019
KM_ERR_NO_DEFAULT HOO80001A

In addition, the API also assigns a text message to the error that can be
retrieved by calling KMErrorGetMessage. When the error originates in the device
(drive or controller) the API parses the message and stores the relevant
information, including the error message and the error number, as given by the
device. This information can be retrieved for the last error via
KMErrorGetDeviceMessage similar to the Win32 API GetLastError function.
Finally, the text of the error message, as originally sent by the device, can be
retrieved via KMErrorGetOriginalDeviceMessage.

The following table lists the error codes that can be returned by the API.

Servotronix Motion API Reference Manual

Introduction softMC

Error Code Value (hex)
KM_ERR_NO_MAX_MIN HO0080001B
KM_ERR_BAD_IRQ_NUMBER HO0080001C
KM_ERR_INVALID_FORMAT HO0080001D
KM_ERR_NOT_IMPLEMENTED HOO80001E
KM_ERR_FAIL_FIND_MSG HOO80001F
KM_ERR_NOT_DEVICE H00800020
KM_ERR_FAILED_OPEN_DEVICE H00800021
KM_ERR_INVALID_VALUE H00800022

KM_ERR_INVALID_DEVICE_CONTEXT H00800023
KM_ERR_GROUP_MAX_EXCEEDED H00800024
KM_ERR_AXIS_ALREADY_IN_GROUP H00800025

KM_ERR_FAIL_FIND_DEVICE HO0800026
KM_ERR_FAIL_WRITE_FILE HO00800027
KM_ERR_FAIL_READ_FILE HO00800028

KM_ERR_CONFIG_ALREADY_EXISTS H00800029
KM_ERR_DEVICE_ALREADY_EXISTS HO080002A

KM_ERR_FAIL_PRODUCT_DLL H0080002B
KM_ERR_WINDOWS_API H0080002C
KM_ERR_VARIABLE_NOT_FOUND H0080002D
KM_ERR_SERIAL_FRAMING HOO80002E
KM_ERR_FAILED_CLOSE_DEVICE HOO80002F
KM_ERR_FAIL_PRODUCT_DLL HO0800030
KM_ERR_SYNTAX_ERROR H00800100
KM_ERR_SSMC_ERROR H00030027
KM_ERR_SERVOSTAR_ERROR H00010027
KM_ERR_SSMC_DRIVER_ERROR H00040027

1.6 Termination (Cleanup)

The last call to the API before your application exits should be a call to
KMTerminate. This function ensures the API handles the cleanup of the internal
information it maintains about your application.

1.7 Sending/Retrieving Files

For the sending and retrieval of files, the API provides the functions KMPutFile
and KMGetFile. In addition to the device handle parameter, the path of the file
and the actual command must be sent when calling either of these functions.

10 Servotronix Motion API Reference Manual

softMC Introduction

1.8 Advanced Asynchronous Message Handling

Controller-generated messages not related to a specific command are called
asynchronous messages. Examples of asynchronous messages are over-speed
warnings, servo drive faults such as limit switch closures, and runtime error
messages from softMC tasks. When these messages are received, the API
converts them into Windows messages (events) which the programmer can
request to be delivered to their application.

By default, the API displays each asynchronous message in a modal dialog box
(via the Win32 MessageBox function). If you want to handle these messages
differently, the function KMAsyncSetHandler allows a window to be registered as
the destination for these messages. KMAsyncGetHandler can be used to save the
previous error handler to allow you to restore it on demand.

Like all Windows messages, WM_KM_ASYNC has two parameters, wParam and
IParam. IParam contains a handle to the buffer that contains the asynchronous
message as received by the API. You can use KMAsyncGetMessage to get the
asynchronous message from the API.

Asynchronous messages are “posted” (PostMessage) by the API (as opposed to
being “sent”).

Asynchronous messages are sent to all applications that have called KMInitialize.

1.9 Programming with Visual Basic

The API is a set of DLLs. When DLLs return strings to Visual Basic they
frequently appear to be corrupted, especially if there was data in the string
before it was passed to the DLL function. This is due to the difference in the
method of storing strings used VB and the method the DLLs use called “zero-
terminated strings”. Zero-terminate strings are commonly used in C/C++
programming. The end of the string is designated by CHR$(0). To clean up a
string that has been returned by a DLL, you need to scan the string for CHR$(0)
and then trim the characters to the right. Another approach to the problem is to
make sure the string is clear before passing it to a DLL. This can be
accomplished by assigning it to vbNullString prior to calling the DLL function.

Servotronix Motion API Reference Manual 11

Introduction softMC

12 Servotronix Motion API Reference Manual

softMC

Functions

2 Functions

Note: The complete list of the Return Values that can be returned by the API
appears in the Error Codes table.

2.1.1 API Initialization

KMInitialize

Prepares the API for use.

C/C++

Visual Basic

KMErrorCode KMInitialize (void)
KMlInitialize() As Long

Return Value

KM_ERR_OK if API is successfully initialized

KM_ERR_WINDOWS_API if the asynchronous message
window cannot be created.

KM_ERR_MEM_LOCK if the application context was not
successfully created.

Remarks The KMInitialize function must be called before any other API
functions are called.
See Also KMTerminate
Example Example #1
KMTerminate

Performs API cleanup required for proper application termination.

C/C++
Visual Basic

KMErrorCode KMTerminate (void)
KMTerminate() As Long

Return Value

Remarks

See Also

Example

KM_ERR_OK if API is successfully terminated.

KM_ERR_MEM_LOCK if the application context cannot be
locked or removed.

KM_ERR_NO_CONTEXT if the application context cannot be
found in the application context registry.

The KMTerminate function must be called before the
application using the API terminates.

KMTerminate can be called at any time in order to flush the
present device table.

KMInitialize
Example #1

Servotronix Motion API Reference Manual 13

Functions softMC

2.2 Device Management
The product type, product class, and communication type constants, specified in the tables
below, are applicable to the functions KMCreateController and KMCreateSERCOSAXis.

Product Type

The following constant is a valid product type:

Constant Value
PROD_SSMC 3

Product Class

The following constants are valid product classes:

Constant Value
CLASS_NONE 0
CLASS_AXIS 1
CLASS_GROUP 2
CLASS_CONTROLLER 3

Communication Type

The following constants are valid communication types:

Constant Value Remarks
COMM_NONE 0
COMM_TCPIP or COMM_ETHERNET 5 Connect to IP address,
with network scan
COMM_TCPIP_DEDICATED 7 Connect to fixed IP address,

without network scan

KMCreateController

Creates a device table entry for a controller.

C/C++ KMDevice KMCreateController(KMProductType
controllerProduct, LPSTR controllerName, KMCommType
controllerCommType, short controllerID, LPSTR
commOptions)

Visual Basic KMCreateController (ByVal controllerProduct As Integer,
ByVal controllerName$, ByVal controllerCommType As
Integer, ByVal controllerID As Integer, ByVal
commOptions$) As Long

controllerProduct Type of controller to create.

controllerName String name for the controller.

14 Servotronix Motion API Reference Manual

softMC

Functions

controllerComm
Type

controllerID

commOptions

How the API communicates with the controller.

The controller’s address.

IP address and optional port, Controller name or a Serial
Number

Return Value

Remarks

See Also

Example

A handle referring to the controller.
See product type description for controllerProduct.

controllerName is provided for user convenience and is not
used internally by the API.

See communication type description for
controllerCommType.

commOptions is a general parameter that is intended for
many uses. Presently, only connections of type
COMM_TCPIP use this parameter. If COMM_TCPIP is
selected then the commOptions parameter allows you to
specify what controller to connect to by IP address,
controller name, serial number or DIP switch setting. The
format for commOptions is as follows:

B “IP: xX.XX.XX.XX" where xx.xX.xX.xx is an IP address
(e.g. "192.10.34.6").

B “NM: yyyyy” where yyyyy is a name assigned by the
user to the Sys.Name property of the controller.

B SN XXXXX-XXX" where XXXXX-XXX is the serial
number assigned to the controller at the factory and
printed on the model number label.

When connecting via serial the IP address should is always
be specified as 91.0.0.2.

If commOptions is not used, the parameter should be an
empty string (™).

KMCreateController allocates memory on behalf of the user.
This memory must be freed before program termination via
KMDestroyDevice.

The range for controllerDevice is 1 - 9.

KMCreateSercosAxis
KMDestroyDevice

Example #1

KMCreateSercosAxis

Create a device table entry for an axis and attach it to a controller.

C/C++

Visual Basic

axisProduct

KMDevice KMCreateSercosAxis(KMProductType
axisProduct, LPSTR axisName, KMDevice controllerDevice)

KMCreateSercosAxis(ByVal axisProduct As Integer, ByVal
axisName$, ByVal controllerDevice As Long) As Long

Type of axis to create

Servotronix Motion API Reference Manual 15

Functions softMC

axisName String name for the axis

controllerDevice Handle of the controller the axis is attached to

Return Value A handle referring to the axis.

Remarks KMCreateSercosAxis allocates memory on behalf of the
user. This memory must be freed before program
termination via KMDestroyDevice.

Refer to tables above: Product Types, Product Classes,
Communication Types

See product type description for axisProduct.

The API uses axisName to access variables on the axis,
therefore it must match the name as it is set within the
controller.

controllerDevice is the handle of the controller the axis is
physically connected to.

See Also KMCreateController
KMDestroyDevice
Example Example #1
KMDestroyDevice

Free memory that was allocated by the API for the device.

C/C++ KMErrorCode KMDestroyDevice(KMDevice device)
Visual Basic KMDestroyDevice(ByVal device As Long) As Long
device Handle for the device to be destroyed.

Return Value KM_ERR_OK if command is successfully transmitted.

Remarks The device handle will not be valid after calling
KMDestroyDevice.
See Also KMCreateController

KMCreateSercosAxis

Example Example #1

2.3 Device Access

KMExecuteCmd
Sends a command to a device.

C/C++ KMErrorCode KMExecuteCmd(KMDevice device, LPSTR
cmdstr)

Visual Basic KMExecuteCmd(ByVal device As Long, ByVal cmdStr$) As
Long

device Handle for the device the command is being sent to.

cmdStr The command to send.

Return Value KM_ERR_OK if command is successfully transmitted.

16 Servotronix Motion API Reference Manual

softMC

Functions

Remarks

See Also

Example

Sends the command cmdStr unmodified to the device
specified by device. Should be used with commands that do
not have responses.

KMExecuteCmdResponse
KMErrorGetMessage
KMErrorGetDeviceMessage

Example #1

KMExecuteCmdResponse

Sends a command to a device and waits for a response.

C/C++

Visual Basic

device
cmdStr
outStr

outSize

KMErrorCode KMExecuteCmdResponse(KMDevice device,
LPSTR cmdStr, LPSTR outStr, DWORD outSize)

KMExecuteCmdResponse(ByVal device As Long, ByVal
cmdsStr$, ByVal outStr$, ByVal outSize As Long) As Long

Handle for the device the command is being sent to.
The command to send.

A buffer for the response.

Size of the outStr buffer.

Return Value

Remarks

See Also

Example

KM_ERR_OK if command is successfully transmitted

Sends the command cmdStr unmodified to the device
specified by device. Should be used with commands that
have responses.

KMExecuteCmd
KMErrorGetMessage
KMErrorGetDeviceMessage

Example #1

KMVariableControllerGetLongValue

Gets the contents of a variable of type long from a controller.

C/C++

Visual Basic

device
varName

pValue

KMErrorCode KMVariableControllerGetLongValue (KMDevice
device, LPSTR varName, LPLONG pValue)

KMVariableControllerGetLongValue(ByVal device As Long,
ByVal varName$, pValue As Long) As Long

Handle for the device that contains the variable.
Name of the variable.

Pointer to a long integer to receive the value of the device
variable.

Return Value

Remarks

KM_ERR_OK on success

varName is the name of the variable as it is on the device.

Servotronix Motion API Reference Manual 17

Functions

softMC

See Also

Example

KMVariableControllerGetDblValue
KMVariableControllerGetStringValue
KMVariableControllerSetLongValue
KMVariableControllerSetDblValue
KMVariableControllerSetStringValue

Example #1

KMVariableControllerGetDblValue

Gets the contents of a variable of type double from a controller.

C/C++

Visual Basic

device
varName

pValue

KMErrorCode KMVariableControllerGetDoubleValue
(KMDevice device, LPSTR varName, LPDOUBLE pValue)

KMVariableControllerGetDblValue(ByVal device As Long,
ByVal varName$, pValue As Double) As Long

Handle for the device that contains the variable.
Name of the variable.

Pointer to a double to receive the value of the device
variable.

Return Value
Remarks

See Also

Example

KM_ERR_OK on success
varName is the name of the variable as it is on the device.

KMVariableControllerGetLongValue
KMVariableControllerGetStringValue
KMVariableControllerSetLongValue
KMVariableControllerSetDblValue
KMVariableControllerSetStringValue

Example #1

KMVariableControllerGetStringValue

Gets the contents of a variable of type string from a controller.

C/C++

Visual Basic

device

varName

pValue

valuelen

KMErrorCode KMVariableControllerGetStringValue (KMDevice
device, LPSTR varName, LPSTR pValue, long valuelen)

KMVariableControllerGetStringValue(ByVal device As Long,
ByVal varName$, ByVal pValue$, ByVal valueLen As Long) As
Long

Handle for the device that contains the variable.
Name of the variable.

Pointer to a character buffer to receive the value of the
device variable.

Length of the character buffer pValue.

Return Value
Remarks

KM_ERR_OK on success

varName is the name of the variable as it is on the device.

18

Servotronix Motion API Reference Manual

softMC

Functions

See Also

Example

KMVariableControllerGetLongValue
KMVariableControllerGetDblValue
KMVariableControllerSetLongValue
KMVariableControllerSetDblVvalue
KMVariableControllerSetStringValue

Example #1

KMVariableControllerSetLongValue

Sets the contents of a variable in a controller of type long.

C/C++

Visual Basic

device
varName

value

KMErrorCode KMVariableControllerSetLongValue (KMDevice
device, LPSTR varName, long value)

KMVariableControllerSetLongValue(ByVal device As Long,
ByVal varName$, ByVal value As Long) As Long

Handle for the device that contains the variable.
Name of the variable.

Value to set the variable varName to.

Return Value
Remarks
See Also

Example

KM_ERR_OK on success
varName is the name of the variable as it is on the device.

KMVariableControllerGetLongValue
KMVariableControllerGetDblValue
KMVariableControllerGetStringValue
KMVariableControllerSetDblValue
KMVariableControllerSetStringValue

Example #1

KMVariableControllerSetDblValue

Sets the contents of a variable in a controller of type double.

C/C++

Visual Basic

device
varName

value

KMErrorCode KMVariableControllerSetDblValue (KMDevice
device, LPSTR varName, double value)

KMVariableControllerSetDblValue(ByVal device As Long,
ByVal varName$, ByVal value As Double) As Long

Handle for the device that contains the variable.
Name of the variable.

Value to set the variable varName to.

Return Value
Remarks

See Also

Example

KM_ERR_OK on success
varName is the name of the variable as it is on the device.

KMVariableControllerGetLongValue
KMVariableControllerGetDblValue
KMVariableControllerGetStringValue
KMVariableControllerSetLongValue
KMVariableControllerSetStringValue

Example #1

Servotronix Motion API Reference Manual

19

Functions softMC

KMVariableControllerSetStringValue
Sets the contents of a variable in a controller of type string.

C/C++ KMErrorCode KMVariableControllerSetStringValue (KMDevice
device, LPSTR varName, LPSTR pValue)

Visual Basic KMVariableControllerSetStringValue(ByVal device As Long,
ByVal varName$, ByVal value$) As Long

device Handle for the device that contains the variable.
varName Name of the variable.
pValue Pointer to a character buffer to set the variable varName to.

Return Value KM_ERR_OK on success
Remarks varName is the name of the variable as it is on the device.

See Also KMVariableControllerGetLongValue
KMVariableControllerGetDblValue
KMVariableControllerGetStringValue
KMVariableControllerSetLongValue
KMVariableControllerSetDblValue

Example Example #1

Example #1

This program shows how to initialize the API, create devices and access variables
on each of the devices.

C/C++

/* Declare device handles */

KMDevice devController;

KMDevice axisA1;

/*Declare variables */

long valuelL;

double valueD;

char valueS[100];

/* Initialize the API */

KMilnitialize();

/* Create a controller */

devController = KMCreateController(PROD_SSMC, "Main controller”,
COMM_TCPIP, 1, "IP:90.0.0.1");

/* Create axes */

axisA1 = KMCreateSercosAxis("A1", devController);

/* Move A1 */

KMExecuteCmd(devController, “MOVE A1 100”);

/* Get variables */

KMVariableControllerGetLongValue(axisA1,"VCRUISE",&valuel);

KMVariableControllerGetDblValue(axisA1,"PFINAL",&valueD);

KMVariableControllerGetStringValue(axisA1,”AMAX”,valueS,sizeof(valueS));

/* Set variables */

KMVariableControllerSetLongValue(axisA1,"VCRUISE",valuel);

KMVariableControllerSetDblValue(axisA1,"PFINAL",valueD);

KMVariableControllerSetStringValue(axisA1,”’AMAX”,valueS);

/* Destroy device table entries */

20 Servotronix Motion API Reference Manual

softMC Functions

KMDestroyDevice(axisA1);
KMDestroyDevice(devController);
[* Terminate the API */
KMTerminate();

Visual Basic

'Declare device handles

Dim devController As Long

Dim axisA1 As Long

'Declare variables

Dim valueL As Long

Dim valueD As Double

Dim errorL As Long

'Initialize the API

errorL = KMInitialize()

'‘Create a controller

devController = KMCreateController(PROD_SSMC, "Main controller”,
COMM_TCPIP, 1, "IP:90.0.0.1")

'‘Create axes

axisA1 = KMCreateSercosAxis(PROD_SSMC, "A1", devController)

'Move A1

errorL = KMExecuteCmd(devController, “MOVE A1 100”);

'Get variables

errorL = KMVariableControllerGetLongValue(axisA1,"VCRUISE",valuel)

errorL = KMVariableControllerGetDblValue(axisA1,"PFINAL",valueD)

errorL = KMVariableControllerGetStringValue(axisA1,”AMAX”,valueS,
Length(valueS))

'Set variables

errorL = KMVariableControllerSetLongValue(axisA1,"VCRUISE",valuel)

errorL = KMVariableControllerSetDblValue(axisA1,"PFINAL",valueD)

errorL = KMVarliableControllerSetStringValue(axisA1,”AMAX”,valueS)

'Destroy device table entries

errorL = KMDestroyDevice(axisA1)

errorL = KMDestroyDevice(devController)

"Terminate the API

errorL = KMTerminate()

KMGetFile

Retrieve a file from a device.

C/C++ KMErrorCode KMGetFile(KMDevice device, LPSTR cmdStr,
LPSTR filename)

Visual Basic KMGetFile(ByVal device As Long, ByVal cmdStr$, ByVal
filename$) As Long

device Handle for the device the file is being retrieved from.
cmdStr The command string to cause the device to send a file.
filename Filename to save file to on host computer.

Return Value KM_ERR_OK if command is successfully transmitted

Remarks The filename (if there is one) in cmdStr and filename
parameters do not have to match.

Servotronix Motion API Reference Manual 21

Functions softMC

See Also KMPutFile
Example Example #2
KMPutFile

Sends a file to a device.

C/C++ KMErrorCode KMPutFile(KMDevice device, LPSTR cmdStr,
LPSTR filename)

Visual Basic KMPutFile(ByVal device As Long, ByVal cmdStr$, ByVal
filename$) As Long

device Handle for the device the file is being sent to.
cmdStr The command string to cause the device to retrieve a file.
filename Filename of file on host computer.

Return Value KM_ERR_OK if command is successfully transmitted

Remarks The filename (if there is one) in cmdStr and filename
parameters do not have to match.
See Also KMGetFile
Example Example #2
Example #2

This program shows how to send and retrieve files to/from a device (controller or
drive) via the API.

C/C++

/* Declare device handles */

KMDevice devController;

/* Initialize the API */

KMilnitialize();

/* Create a controller */

devController = KMCreateController(PROD_SSMC, "Main controller”,
COMM_TCPIP, 1, "IP:90.0.0.1");

/* Get a file called “PROG1.PRG” from devController */

KMGetFile(devController,’ RETRIEVE PROG1.PRG”,”"C:\\PROG1.PRG”);

/* Send a file called “PROG2.PRG” to devController */

KMPutFile(devController,”"SEND PROG2.PRG”,"C:\\\PROG2.PRG”);

/* Destroy device table entries */

KMDestroyDevice(devController);

/* Terminate the API */

KMTerminate();

22 Servotronix Motion API Reference Manual

softMC

Functions

Visual Basic

'Declare device handles

Dim devController As Long

'Declare Variables

Dim errorL as KMErrorCode

'Initialize the API

errorL = KMInitialize()

'Create a controller

devController = KMCreateController(PROD_SSMC, "Main controller”,
COMM_TCPIP, 1, "IP:90.0.0.1");

'Get a file called “PROG1.PRG” from devController

errorL = KMGetFile(devController,"RETRIEVE
PROG1.PRG”,”"C:\\PROG1.PRG”)

'Send a file called “PROG2.PRG” to devController

errorL = KMPutFile(devController,”"SEND PROG2.PRG”,"C:\\PROG2.PRG”)

'Destroy device table entries

errorL = KMDestroyDevice(devController)

"Terminate the API

Dim errorL = KMTerminate()

KMGetMaxControllerAxis

Gets the maximum number of axis allowed for a given controller.

C/C++ short KMGetMaxControllerAxis(KMDevice controller);
Visual Basic KMGetMaxControllerAxis(ByVal controller As Long) As Integer
controller Handle of the controller to be checked.

Return Value Maximum number of axis allowed.

Remarks This function must be passed a valid handle to a controller.

2.4 Error Handling

Error handling is one of the most important elements for creating a robust
application. The API provides comprehensive error handling which allows the
programmer to properly handle all situations. While using the API, errors can
occur at the following levels:

Internally, within the API: host computer runs out of memory

Communication between the API and the device: device fails to respond in
time

Internally, within the device: a move cannot be made due to a limit switch
being open

Every function in the API returns a result, which is almost always of the type
KMErrorCode (Long for Visual Basic users). Each error type is well identified in
the error code.

Note: The complete list of the Return Values that can be returned by the API

appears in the Error Codes table.

Servotronix Motion API Reference Manual 23

Functions softMC

Example #3

The following is an example of the proper method of handling errors returned
from the API.

C/C++
if (err '= KM_ERR_OK)
{
char strBuf[1024];
KMErrorCode err2;
if (IS_DEVICE_ERROR(err)) // the error is device related
{
/I This next call will eventually be KMErrorGetDeviceMessage
err2 = KMErrorGetOriginalDeviceMessage(strBuf, sizeof(strBuf));
/I insert your code to print the error message here
if (err2 == KM_ERR_OK)
{
/I insert your code to print the error message here
}
else
printf("Error calling KMErrorGetOriginalDeviceMessage"
"[%08X].", err2);
}
else
{
/l the error is an API error so get the error message
// from the API
err2 = KMErrorGetMessage(err, strBuf, sizeof(strBuf));
if (err2 == KM_ERR_OK)
/I insert your code to print the error message here
}
else
printf("Error calling KMErrorGetMessage [%08X].", err2);
}
}

Visual Basic

Dim strBuf as String * 1024
Dim err as Long
Dim err2 as Long
If err <> KM_ERR_OK Then
If IS_DEVICE_ERROR(err) Then ' the error is device related
' This next call will eventually be KMErrorGetDeviceMessage,
err2 = KMErrorGetOriginalDeviceMessage(strBuf, 1024)
"insert your code to print the error message here
If err2 = KM_ERR_OK Then
" insert your code to print the error message here
Else
MsgBox "Error calling KMErrorGetOriginalDeviceMessage"
End If
Else
' the error is an API error so get the error message
' from the API

24 Servotronix Motion API Reference Manual

softMC

Functions

KMErrorGetMessage

End If
End If

Else

err2 = KMErrorGetMessage(err, strBuf, sizeof(strBuf))
If err2 = KM_ERR_OK

"insert your code to print the error message here

MsgBox "Error calling KMErrorGetMessage"

End If

Get text of the error message related to an error code.

C/C++

Visual Basic

errCode
buf
bufLen

KMErrorCode KMErrorGetMessage(KMErrorCode errCode,
LPSTR buf, short buflLen)

KMErrorGetMessage(ByVal errCode As Long, ByVal bufs$,
ByVal bufLen As Integer) As Long

Error code to get the message for.
Character array buffer to store error message in.

Length of buf array.

Return Value

Remarks

See Also

Example

KM_ERR_OK if command is successfully transmitted

The text returned is device dependent and is not translated
in any way. If more than one line of text is returned the lines
will be separated with newline characters (*\n’).

KMErrorGetDeviceMessage
KMErrorGetOriginalDeviceMessage

Example #4

KMErrorGetDeviceMessage

Get original text and error number of last device error.

C/C++

Visual Basic

pErrCode
buf
buflLen

KMErrorCode KMErrorGetDeviceMessage(KMErrorCodePtr
pErrCode, LPSTR buf, short bufLen)

KMErrorGetDeviceMessage(pErrCode As Long, ByVal buf$,
ByVal bufLen As Integer) As Long

Pointer to variable to store last error number in.
Character array buffer for device error message.

Length of buf array

Return Value

Remarks

See Also

Example

KM_ERR_OK if command is successfully transmitted
Last device error is stored on a per application context basis.

The text returned is device dependent and is not translated
in any way. If more than one line of text is returned the lines
will be separated with newline characters (*\n’).

KMErrorGetMessage
KMErrorGetOriginalDeviceMessage

Example #4

Servotronix Motion API Reference Manual 25

Functions softMC

KMErrorGetOriginalDeviceMessage

Retrieves entire original error message from buffer.

C/C++ KMErrorCode KMErrorGetOriginalDeviceMessage(LPSTR buf,
short bufLen);

Visual Basic KMErrorGetOriginalDeviceMessage(ByVal buf$, ByVal bufLen
As Integer) As Long

buf Character array buffer to store error message in

bufLen Length of buf array.

Return Value KM_ERR_OK if command is successfully transmitted.

Remarks The text returned is the original error message that was
generated and stored in the buffer.

See Also KMErrorGetDeviceMessage
KMErrorGetMessage

Example Example #4

Example #4

This program shows how to get the text descriptions associated with any error
number or the last error that occurred.

C/C++

/* Declare device handles */

KMDevice devController;

/* Declare error code variables */

KMErrorCode err;

char strErrBuf[500];

/* Initialize the API */

KMilnitialize();

/* Create a controller */

devController = KMCreateController(PROD_SSMC, "Main controller”,
COMM_TCPIP, 1, "IP:90.0.0.1");

/* A statement that will cause an error */

err = KMVariableGetLongValue(axisA1,"VCRUIS",&valuel); /* VCRUIS should
be VCRUISE */

if (err 'I= KM_ERR_OK) /* do something if there was an error */

KMErrorGetMessage(err,strErrBuf,sizeof(strErrBuf));
printf(“The error message was: %s\n”,strErrBuf);
}
/* Another way to get the last error */
err = KMVariableGetLongValue(axisA1,"VCRUIS",&valuel); /* VCRUIS should
be VCRUISE */
KMErrorGetDeviceMessage(&err,strErrBuf,sizeof(strErrBuf));
if (err I= KM_ERR_OK) /* do something if there was an error */

printf(“The error message was: %s\n”,strErrBuf);

}

/* Destroy device table entries */
KMDestroyDevice(devController);

26 Servotronix Motion API Reference Manual

softMC

Functions

/* Terminate the API */
KMTerminate();

Visual Basic

'Declare device handles

Dim devController As Long

'Declare error code variables

Dim err As Long

Dim strErrBuf as String[10000]

'Initialize the API

err = KMInitialize()

'‘Create a controller

devController = KMCreateController(PROD_SSMC, "Main controller”,

COMM_TCPIP, 1, "IP:90.0.0.1");

'A statement that will cause an error

err = KMVariableGetLongValue(axisA1,"VCRUIS",valuel)

'VCRUIS should be VCRUISE

If err '= KM_ERR_OK Then 'do something if there was an error
err = KMErrorGetMessage(err,strErrBuf,10000)
Print "The error message was: "; strErrBuf

Endlf

'‘Another way to get the last error

err = KMVariableGetLongValue(axisA1,"VCRUIS",valuel)

'VCRUIS should be VCRUISE

err = KMErrorGetDeviceMessage(err,strErrBuf,10000)

If err '= KM_ERR_OK Then 'do something if there was an error
Print "The error message was: "; strErrBuf

Endlf

'Destroy device table entries

err = KMDestroyDevice(devController)

"Terminate the API

err = KMTerminate()

2.5 Device Table Access

KMGetAxisController

Get a handle to the controller the axis is associated with.

C/C++ KMDevice KMGetAxisController(KMDevice axis)
Visual Basic KMGetAxisController(ByVal axis As Long) As Long

axis Handle to a axis

Return Value Handle of the controller the axis is located on.
Remarks An axis is assigned to a controller during creation.

See Also KMCreateSercosAxis
KMCreateController

Example Example #5

Servotronix Motion API Reference Manual

27

Functions

softMC

KMGetDeviceName

Get the name assigned to the device.

C/C++

Visual Basic

device
name

namelLen

KMErrorCode KMGetDeviceName(KMDevice device, LPSTR
name, long namelen)

KMGetDeviceName(ByVal device As Long, ByVal
deviceName$, ByVal namelLen As Long) As Long

Handle to a device
String buffer to place the name in

Length of name buffer including zero terminator

Return Value
Remarks
See Also

Example

KM_ERR_OK if command is successfully transmitted
A name is assigned to a device during creation.

KMCreateController
KMCreateSercosAxis

Example #5

KMGetDeviceProductClass

Get the product class for a device.

C/C++
Visual Basic

device

KMProductClass KMGetDeviceProductClass(KMDevice device)
KMGetDeviceProductClass(ByVal device As Long) As Integer
Handle to the device

Return Value

Remarks

See Also

Example

The product class of the device.
See the product class description.
Product class is assigned by the API during device creation.

KMCreateController
KMCreateSercosAxis

Example #5

KMGetDeviceProductType

Get the product type for a device.

C/C++
Visual Basic

device

KMProductType KMGetDeviceProductType(KMDevice device)
KMGetDeviceProductType(ByVal device As Long) As Integer
Handle to the device

Return Value

Remarks

See Also

Example

The product type of the device.
See product type description.
Product type is assigned by the user during device creation.

KMCreateController
KMCreateSercosAxis

\%

28

Servotronix Motion API Reference Manual

softMC Functions

KMGetDeviceCommType

Get the communication type for a device.

C/C++
Visual Basic

device

KMCommType KMGetDeviceCommType(KMDevice device)
KMGetDeviceCommType(ByVal device As Long) As Integer
Handle to the device

Return Value

Remarks

See Also

Example

The communication type of the device. See communication
type description.

Communication type is assigned during device creation
depending on what KMCreate call is used.

KMCreateController
KMCreateSercosAxis

Example #5

KMGetDeviceCommPort
Get the COM port the device is attached to.

C/C++

Visual Basic

KMErrorCode KMGetDeviceCommPort(KMDevice device,
LPSTR commPort, long commPortLen)

KMGetDeviceCommPort(ByVal device As Long, ByVal
commpPort$, ByVal commPortLen As Long) As Long

device Handle to the device
comPort String with COM port that the device is connected to
comPortLen Length of comPort string

Return Value

KM_ERR_OK if command is successfully transmitted

Remarks Comm port is assigned during device creation. Will return a
blank (NULL) string if no COMM port assigned.

See Also KMCreateController

Example Example #5

KMGetControllerID

Get the controller address for the controller.

C/C++
Visual Basic

controller

short KMGetControllerID(KMDevice controller)
KMGetControllerID(ByVal controller As Long) As Integer
Handle to the controller

Return Value
Remarks
See Also

Example

0 is returned if there is no controller ID for the device.
ControllerID is assigned during controller creation.
KMCreateController

Example #5

Servotronix Motion API Reference Manual 29

Functions softMC

Example #5

This program shows how to use the functions that access the device table.

C/C++

/* Declare device handles */

KMDevice devController1, devController2;

KMDevice axisA1;

/* Declare variables */

char buf[500];

KMDevice handle;

/* Initialize the API */

KMinitialize();

/* Create a plugin controller */

devController1 = KMCreateController(PROD_SSMC, "Main controller",
COMM_TCPIP, 1, "IP:90.0.0.1");

/* Create a controller on a serial port */

devController2 = KMCreateController(PROD_SSMC, "Secondary controller",
COMM_TCPIP, 2, "IP:90.0.0.2");

/* Create an axis on the main controller */

axisA1 = KMCreateSercosAxis(COMM_TCPIP, “A1”);

/* What controller is the axis associated with? */

handle = KMGetAxisController(axisA1);

if (KMGetDeviceProductClass(handle) == CLASS_CONTROLLER &&
KMGetDeviceProductType(handle) ==
PROD_SSMC)

KMGetDeviceName(handle, buf, sizeof(buf));
printf(“The axis A1 is located on the %s.\n", buf);
}
else
printf(“Unexpected device type or class.\n”);
/* What Comm port is the secondary controller on? */
printf(“The secondary controller is communicating on %s.\n”,
KMGetDeviceCommType(devController2));
/* What ID# is the secondary controller? */
printf(“The secondary controller is ID# %d.\n”,
KMGetControllerID(devController2));
/* Destroy device table entries */
KMDestroyDevice(axisA1);
KMDestroyDevice(devController1);
KMDestroyDevice(devController2);
/* Terminate the API */
KMTerminate();

Visual Basic

'Declare device handles
Dim devController1 As Long
Dim devController2 As Long
Dim axisA1 As Long
'Declare variables

buf$

Dim handle As Long

Dim errorL As Long

30 Servotronix Motion API Reference Manual

softMC

Functions

Else

Endlf

'Initialize the API

errorL = KMInitialize()

'Create a plugin controller

devController1 = KMCreateController(PROD_SSMC, "Main controller",

COMM_TCPIP, 1, "IP:90.0.0.1")

'Create a controller on a serial port
devController2 = KMCreateController(PROD_SSMC, "Secondary controller",

COMM_TCPIP, 2, "IP:90.0.0.1")

'‘Create an axis on the main controller

axisA1 = KMCreateSercosAxis(PROD_SSMC, “A1”)

‘What controller is the axis associated with?

handle = KMGetAxisController(axisA1)

If KMGetDeviceProductClass(handle) == CLASS_CONTROLLER &&

KMGetDeviceProductType(handle) ==
PROD_SSMC Then

errorL = KMGetDeviceName(handle, buf, Length(buf))
Print "The axis A1 is located on the"; buf

Print "Unexpected device type or class."

'What Comm port is the secondary controller on?

Dim commType As Long

commType = KMGetDeviceCommType(devController2)
Print "The secondary controller is communicating on"; commType
'‘What ID# is the secondary controller?

Dim contID As Long

contlD = KMGetControllerID(devController2)

Print "The secondary controller is ID# "; contID
'Destroy device table entries

errorL = KMDestroyDevice(axisA1)

errorL = KMDestroyDevice(devController1)

errorL = KMDestroyDevice(devController2)

"Terminate the API

errorL = KMTerminate()

2.6 Device Table Saving and Loading

KMWriteDeviceFile

Write present API configuration to a file.

C/C++
Visual Basic

fileName

KMErrorCode KMWriteDeviceFile(LPSTR fileName)

String with filename

Return Value
Remarks
See Also

Example

KM_ERR_OK if command is successfully.
API must have rights to write to fileName.
KMReadDeviceFile

Example #6

Servotronix Motion API Reference Manual 31

Functions

softMC

KMReadDeviceFile

Read a new API configuration from a file.

C/C++ KMErrorCode KMReadDeviceFile(LPSTR fileName)
Visual Basic

fileName String with filename

Return Value KM_ERR_OK if command is successfully.

Remarks API must have rights to read from fileName.
See Also KMWriteDeviceFile
Example Example #6

Example #6

C/C++

This program shows how to read and write device tables.

/* Initialize the API */

KMilnitialize();

/* Read in device table */
KMReadDeviceFile(“API1.TBL”);

/* Write device table out to another file */
KMWriteDeviceFile(“API12.TBL”);

/* Terminate the API */

KMTerminate();

Visual Basic

'‘Create An Error Variable

Dim errorL As Long

'Initialize the API

errorL = KMInitialize()

'Read in device table

errorL = KMReadDeviceFile(“API1.TBL”")
"Write device table out to another file
errroL = KMWriteDeviceFile(“API2.TBL”)
"Terminate the API

errorL = KMTerminate()

2.7 Device Table Iterators

KMCreateDevicelterator

Create an iterator to traverse the device table.

C/C++

Visual Basic

prodClass, KMDevice device)

device As Long) As Long

prodClass Product class to select an iterator for.

KMDevicelterator KMCreateDevicelterator(KMProductClass

KMCreateDevicelterator(ByVal prodClass As Integer, ByVal

32

Servotronix Motion API Reference Manual

softMC

Functions

device

Device to select an iterator for.

Return Value

Remarks

See Also

Example

Handle to the device iterator, NULL on failure.

These combinations of prodClass and device type result in
the following:

prodClass Device Result

CLASS_NONE NULL all controllers, groups and axes
CLASS_CONTROLLER NULL all controllers

CLASS_GROUP NULL all groups

CLASS_AXIS NULL all axes

CLASS_GROUP CONTROLLER ' all groups for a controller
CLASS_AXIS CONTROLLER all axes for a controller
CLASS_AXIS GROUP all axes for a group

All other combinations are invalid.

KMDestroyDevicelterator
KMGetNextDevice
KMGetPrevDevice
KMReadDeviceFile
KMWriteDeviceFile
KMCreateController
KMCreateSercosAxis

Example #7

KMDestroyDevicelterator

Destroy the device table iterator.

C/C++

Visual Basic

devicelter

KMErrorCode KMDestroyDevicelterator(KMDevicelterator
devicelter)

KMDestroyDevicelterator(ByVal devicelter As Long) As Long

Handle for the iterator to destroy

Return Value

KM_ERR_OK if command is successfully transmitted.

Remarks Must be called to release memory allocated by the API for the
user.
See Also KMCreateDevicelterator
KMGetNextDevice
KMGetPrevDevice
Example Example #7
KMGetNextDevice

Retrieve the next device in the device table.

C/C++
Visual Basic

KMDevice KMGetNextDevice(KMDevicelterator devicelter)
KMGetNextDevice(ByVal devicelter As Long) As Long

Return Value

Handle to the next device or NULL if another device is not
found.

Servotronix Motion API Reference Manual 33

Functions

softMC

Remarks Must create a device iterator first with
KMCreateDevicelterator.
See Also KMCreateDevicelterator
KMDestroyDevicelterator
KMGetPrevDevice
Example Example #7
KMGetPrevDevice

Retrieve the previous device in the device table.

C/C++

Visual Basic

KMDevice KMGetPrevDevice(KMDevicelterator devicelter)

KMGetPrevDevice(ByVal devicelter As Long) As Long

Return Value

Handle to the previous device or NULL if another device is
not found.

Remarks Must create a device iterator first with
KMCreateDevicelterator.
See Also KMCreateDevicelterator
KMDestroyDevicelterator
KMGetNextDevice
Example Example #7
Example #7

This program shows how to iterate the device table.

/* Initialize the API */

KMilnitialize();

/* This example not complete. Contact factory for more information */
/* Terminate the API */

KMTerminate();

2.8 Asynchronous Message Handler

Asynchronous messages are messages that originate on a device. They are not
related to a command or action initiated through the API; that is, they are not
the response to a command. The API converts these messages into Windows
messages. By default, the API then displays the message in a modal dialog box
in the center of the screen.

If you want to handle the asynchronous messages on your own, you must
handle the WM_KM_ASYNC message. In C/C++ and MFC this is straightforward.
Visual Basic requires advanced programming or the use of an ActiveX control.

Note: Like all Windows messages, WM_KM_ASYNC has two parameters,
wParam and IParam. IParam contains a handle to the buffer which
contains the asynchronous message received by the APIL. You can use
KMAsyncGetMessage to get the asynchronous message from the APIL.

Disabling the display of the asynchronous messages can be accomplished
through the function KMAsyncEnableMessages.

34

Servotronix Motion API Reference Manual

softMC Functions

KMAsyncGetHandler

Returns the present asynchronous message handler.

C/C++ KMAsyncHandler KMAsyncGetHandler(void)
Visual Basic KMAsyncGetHandler() As Long

Return Value Window handle (HWND) of present asynchronous message

handler.
Remarks Save return value before calling KMAsyncSetHandler.
See Also KMAsyncGetHandler
KMAsyncSetHandler
KMAsyncGetMessage
KMAsyncEnableMessages
Example Example #8
KMAsyncSetHandler

Set the asynchronous message handler.

C/C++ KMErrorCode KMAsyncSetHandler(KMAsyncHandler
hAsyncHandler)

Visual Basic KMAsyncSetHandler(ByVal hAsyncHandler As Long) As Long
hAsyncHandler Window handle (HWND) to send asynchronous messages to

Return Value KM_ERR_OK if command is successfully transmitted.

Remarks Call KMAsyncGetHandler and save the return value before
calling KMAsyncSetHandler in order to restore prior value.
See Also KMAsyncGetHandler
KMAsyncSetHandler
KMAsyncGetMessage
KMAsyncEnableMessages
Example Example #8
KMAsyncGetMessage

Gets the message contents and message type for the asynchronous message
associated with the asynchronous message handle stored in WM_KM_ASYNC's

IPARAM.
C/C++ KMErrorCode KMAsyncGetMessage(LPARAM hAsyncMsg,
LPSTR IpszMessage, UINT nMessageSize, LPSTR
nMessageType)

Visual Basic KMAsyncGetMessage (ByVal hAsyncMsg As Long, ByVal
IpszMessage$, ByVal nMessageSize As Long, ByVal
nMessageType$) As Long

hAsyncMsg Handle associated with the message (LPARAM).
IpszMessage The text associated with the message.
nMessageSize | Size of IpszMessage buffer.

nMessageType The type of message received.

Servotronix Motion API Reference Manual 35

Functions softMC

Return Value KM_ERR_OK if message was retrieved successfully.

Remarks This function can only be called once for each asynchronous
message handled.

See Also KMAsyncGetHandler
KMAsyncSetHandler
KMAsyncGetMessage
KMAsyncEnableMessages

Example Example #8

KMAsyncEnableMessages

Enables and disables the display of asynchronous messages both for the default
display by the API and the message delivery to your application.

C/C++ KMErrorCode KMAsyncEnableMessages(UINT16 bVal)
Visual Basic KMAsyncEnableMessages (ByVal bVal As Integer) As Long

bVval Non zero means display the asynchronous messages.

Return Value KM_ERR_OK if function was executed successfully.

Remarks
See Also KMAsyncGetHandler
KMAsyncSetHandler
KMAsyncGetMessage
KMAsyncEnableMessages
Example Example #8
Example #8

This program shows how to set the async message handler.

/* Initialize the API */

KMilnitialize();

/* Example to be completed. Contact factory for more information */
[* Terminate the API */

KMTerminate();

2.9 Serial and Ethernet Specific Functions

KMTCPRefreshDevices

Forces an update of the devices connected to the host computer via serial or
Ethernet. This function uses the RBOOTP protocol to automatically identify
connected devices.

C/C++ KMErrorCode KMTCPRefreshDevices(void)
Visual Basic KMTCPRefreshDevices() As Long
Return Value KM_ERR_OK on success

Remarks This function implements the RBOOTP protocol.

36 Servotronix Motion API Reference Manual

softMC Functions
See Also KMTCPGetNumDevices
KMTCPGetDevicelnformation
Example Example #9
KMTCPGetNumbDevices

Gets a count of the number of devices connected via TCP/IP (serial or Ethernet).

C/C++ KMErrorCode KMTCPGetNumDevices(LPUINT16
IpnNumDevices)

Visual Basic KMTCPGetNumDevices(lpnNumDevices As Integer) As Long

IpnNumDevices Pointer to a 16 bit integer to receive the number of devices

Return Value KM_ERR_OK on success

Remarks The count returned by KMTCPGetNumDevices is updated
each time KMTCPRefreshDevices is called.

See Also KMTCPRefreshDevices
KMTCPGetDevicelnformation

Example Example #9

KMTCPGetDeviceInformation

Gets the list of devices connected via TCP/IP (serial or Ethernet).

C/C++

Visual Basic

IpszNameArray

IpszAddressArray

IpszSNArray

DIPArray

nNumbDevices

KMErrorCode KMTCPGetDevicelnformation(LPSTR
IpszNameArray[], LPSTR IpszAddressArray[], LPSTR
IpszSNArray[], UINT16 DIPArray[], INT32 nNumbDevices)

KMTCPGetDevicelnformation(ByVal IpszNameArray As
Long, ByVal IpszAddressArray As Long, ByVal IpszSNArray
As Long, ByVal nNumDevices As Long) As Long

An array of pointers to strings containing the names of the
controllers.

An array of pointers to strings (at least 16 characters long)
containing the IP addresses of the controllers.

An array of pointers to strings containing the serial
numbers of the controllers.

An array of short integers (16-bit) containing the DIP
switch addresses of the controllers.

The length (number of elements) of IpszNameArray,
IpszAddressArray and IpszSNArray.

Return Value

Remarks

KM_ERR_OK on success

If a controller is removed from the network or is not
communicating properly, the IP address for the controller
will be set to 0.0.0.0 instead of deleting the entry from the
table.

Visual Basic is somewhat unusual in that the function
passes arrays of strings. Example #9 shows how to use
this function.

Servotronix Motion API Reference Manual 37

Functions softMC
See Also KMTCPGetNumDevices
KMTCPRefreshDevices
Example Example #9
Example #9

This program shows how to retrieve the devices that are connected via Ethernet

C/C++

or serial from the API:

unsigned short NumberDevices = 0;

/* Force the API to look for devices on the network */
KMTCPRefreshDevices();

/* Get the number of devices found on serial and/or Ethernet */
KMTCPGetNumDevices(&NumberDevices);

/* Initialize the array to retrieve all device names, */
/* serial numbers, and IP addresses */

char **NameArray= new char*[NumberDevices];
char **IPArray = new char*[NumberDevices];

char **SNArray = new char*[NumberDevices];
UINT16 *DIPArray = new UINT16[NumberDevices];
for(int j=0;j<NumberDevices;j++)

NameArray[jl=new char[MAX_TCP_NM_LENGTH];
IPArray[j]J=new char[MAX_TCP_IP_LENGTH];
SNArray[j]=new char[MAX_TCP_SN_LENGTH];
}
/* Retrieve the device information */
KMTCPGetDevicelnformation(NameArray, IPArray, SNArray, DIPArray,
NumberDevices);

Visual Basic

Private Sub Command1_Click()
'Declare variables

Dim NumberDevices As Integer
Dim NameString(100) As String
Dim NumberDevicesas As Integer
Dim IPString(100) As String

Dim DIPArray(100) As Integer
Dim SerialString(100) As String
Dim err As Long

Dim tempstr As String

'Initialize the API
errorL = KMInitialize()
‘refresh the list of tcp devices
err = KMTCPRefreshDevices()
' Get the number of devices found on serial and/or Ethernet
err = KMTCPGetNumDevices(NumberDevices)
" Initialize the array to retrieve all device names,
' serial numbers, and IP addresses
Fori=0To 100

38

Servotronix Motion API Reference Manual

softMC

Functions

NameString(i) = Space(20)
SerialString(i) = Space(10)
IPString(i) = Space(20)
Next i
' Retrieve the device information
err = KMTCPGetDevicelnformation(VarPtr(NameString(0)), VarPtr(IPString(0)),
VarPtr(SerialString(0)), VarPtr(DIPArray(0)), NumberDevices)
Fori =0 To NumberDevices - 1
NameString(i) = StrConv(NameString(i), vbUnicode)
IPString(i) = StrConv(IPString(i), vbUnicode)
SerialString(i) = StrConv(SerialString(i), vbUnicode)
tempstr = ClipString(NameString(i)) + " " + ClipString(IPString(i)) + " " +
ClipString(SerialString(i))
List1.Addltem (tempstr), i
Next
List1.Visible = True
"Terminate the API
errorL = KMTerminate()
End Sub

Function ClipString(InputString As String) As String
"This function trims the null characters off the right side of a long string
Dim xx As Integer
xx = InStr(1, InputString$, Chr$(0)) 'find the first null character
If xx Then
ClipString$ = Mid$(InputString$, 1, xx - 1)
Else
ClipString$ = InputString$
End If
End Function

Servotronix Motion API Reference Manual 39

Functions

softMC

40

Servotronix Motion API Reference Manual

softMC Glossary

3 Glossary

API Application programming interface: a set of routines and
tools that simplify the development of software applications.

asynchronous Messages generated by a device that are not in response to

messages a particular command, such as warnings and error
messages.
axis A motor and drive. When a multi-axis controller is used, also

includes the components of the controller related to the
motor and drive.

controller Commands the motor, through a drive, to move to various
positions or at a velocity.

device Represents the physical objects (axis, group or controller) in
the system.

device table A database managed by the API that enables
communication with devices specified by the user.

DLL Dynamic link library

group A collection of axes that are coordinated, usually by a multi-
axis controller such as the softMC.

long A common type of variable used in computer languages.
In this case a 32-bit signed integer.

IParam A double word size (long) parameter for a Windows
message.

RBOOTP A proprietary protocol, similar to the standard BOOTP

protocol, used to identify devices connected to IP-based
networks (serial/PPP or Ethernet).

CDHD Name of Servotronix servo drive product line.
softMC Name of Servotronix multi-axis motion controller.
string A common type used in computer languages.
wParam A word size parameter for a Windows message.

Servotronix Motion API Reference Manual 41

Servotronix - 21C Yagia Kapayim St.

POB 3919 Petach Tikva 49130, Israel
‘ SERVOTRONIX Tel: 972-3-927-3800 e

always in motion info@servotronix.com
WWW.servotronix.com

mailto:info@servotronix.com
http://www.servotronix.com/

	Cover
	Revision History
	Copyright Notice
	Disclaimer
	Trademarks
	Contact Information
	Customer Service

	Contents
	1 Introduction
	1.1 Overview
	1.2 Initialization
	1.3 Device Table
	1.4 Accessing Devices
	Command Execution
	Variable Access

	1.5 Error Messages
	Error Codes

	1.6 Termination (Cleanup)
	1.7 Sending/Retrieving Files
	1.8 Advanced Asynchronous Message Handling
	1.9 Programming with Visual Basic

	2 Functions
	2.1.1 API Initialization
	KMInitialize
	KMTerminate

	2.2 Device Management
	Product Type
	Product Class
	Communication Type
	KMCreateController
	KMCreateSercosAxis
	KMDestroyDevice

	2.3 Device Access
	KMExecuteCmd
	KMExecuteCmdResponse
	KMVariableControllerGetLongValue
	KMVariableControllerGetDblValue
	KMVariableControllerGetStringValue
	KMVariableControllerSetLongValue
	KMVariableControllerSetDblValue
	KMVariableControllerSetStringValue
	Example #1
	C/C++
	Visual Basic

	KMGetFile
	KMPutFile
	Example #2
	C/C++
	Visual Basic

	KMGetMaxControllerAxis

	2.4 Error Handling
	Example #3
	C/C++
	Visual Basic

	KMErrorGetMessage
	KMErrorGetDeviceMessage
	KMErrorGetOriginalDeviceMessage
	Example #4
	C/C++
	Visual Basic

	2.5 Device Table Access
	KMGetAxisController
	KMGetDeviceName
	KMGetDeviceProductClass
	KMGetDeviceProductType
	KMGetDeviceCommType
	KMGetDeviceCommPort
	KMGetControllerID
	Example #5
	C/C++
	Visual Basic

	2.6 Device Table Saving and Loading
	KMWriteDeviceFile
	KMReadDeviceFile
	Example #6
	C/C++
	Visual Basic

	2.7 Device Table Iterators
	KMCreateDeviceIterator
	KMDestroyDeviceIterator
	KMGetNextDevice
	KMGetPrevDevice
	Example #7

	2.8 Asynchronous Message Handler
	KMAsyncGetHandler
	KMAsyncSetHandler
	KMAsyncGetMessage
	KMAsyncEnableMessages
	Example #8

	2.9 Serial and Ethernet Specific Functions
	KMTCPRefreshDevices
	KMTCPGetNumDevices
	KMTCPGetDeviceInformation
	Example #9
	C/C++
	Visual Basic

	3 Glossary

